2023下半场,人工智能(AI)有何发展趋势?产业层面如何演化?哪些细分领域最为受益呢?
近日,记者专访了中信建投证券研究所所长兼国际业务部行政负责人武超,就相关问题作出分析解读。
武超则是新财富白金分析师,2013年至2020年连续八届新财富最佳分析师通信行业第一名,专注于5G、云计算、物联网等领域研究。目前是中国证券业协会证券分析师、投资顾问与首席经济学家委员会委员。
(相关资料图)
AI正处于通用人工智能曙光乍现的阶段
对于目前人工智能的发展阶段,武超则认为,正处于狭义人工智能相对成熟、通用人工智能(AGI)曙光乍现的阶段。
“通用人工智能是指具有像人类一样的思考能力,可以适应广泛的领域并解决多种问题的机器智能,通用人工智能是人工智能研究的重要目标之一。”武超则说。
武超则解释称,狭义人工智能是指当下已取得显著进展,但局限于特定领域的人工智能,如语音识别、机器视觉等。目前以GPT-4为代表的自然语言大模型,则被认为是通往通用人工智能的重要潜在路径。
“进一步展望未来,脑机接口有望成为下一代人机交互方式。当前,脑机接口技术正在突破人类的生理界限。”武超则称。
现阶段,武超则认为,大模型正在成为新一代的流量入口。GPT-4正在逐步开放插件功能,通过底层模型连接第三方应用,从而构建丰富的生态系统。GPT-4自插件功能开放以来,目前已经接入超过500个插件。
“随着大模型能力的不断增强以及插件生态的不断丰富,大模型有望成为新一代的人机交互方式以及流量入口。”武超则判断。
大模型正朝多模态信息融合方向快速发展
而对于大模型接下来的发展,武超则表示,目前文本、语音、图片等单模态人工智能模型已经相对成熟,大模型正在朝着多模态信息融合的方向快速发展。
“从CLIP的诞生再到GPT-4的图像处理能力,图文多模态技术已经取得了显著的进步。大模型已不只满足文字和图像,也开始向着音频、视频等领域拓展。”武超则说。
武超则进一步指出,多模态模型能够处理视觉信息、文本信息、听觉信息等多元化数据,可以对不同表现形式的信息进行融合理解,进一步提升大模型的迁移学习能力,是人工智能全面理解真实世界的重要一步。
现阶段来看,谷歌推出RoboCat大模型,英伟达推出Nvidia VIMA,武超则认为具身智能已经成为AI龙头企业竞相争夺的高地。
“具身智能是可以和物理世界进行感知交互,并具有自主决策和行动能力的人工智能系统。通用人工智能与机器人产业正处在快速发展、互相融合促进的战略机遇期,作为两大领域交叉的核心应用,具身智能有望在未来取得快速发展。”武超则判断。
模型性能提升需建立在高质量数据之上
对于人工智能接下来的发展,武超则强调,深度学习的进步,势必建立在以更大的模型处理海量数据基础之上。
“GPT-1模型从1.17亿参数上升至GPT-3的1750亿参数,模型效果取得了显著突破,同时还有能力的涌现。但是模型参数量的增大带来算力需求的激增,模型架构和参数量提升带来的收益正处于递减状态。”武超则说。
武超则进一步指出,相关研究显示,高质量的语言数据将在2026年耗尽,低质量的语言数据和图像数据将分别在2030-2050年、2030-2060年间枯竭。
“以数据为中心的人工智能更加专注于数据的价值,将进一步推动AI模型的性能突破。例如,斯坦福大学吴恩达教授便提出了二八定律,即‘80%的数据+20%的模型=更好的AI’。”武超则称。
在武超则看来,以数据为中心的策略可以解决数据样本不足、数据偏差等问题,高质量数据集成为推动模型性能进一步提升的关键要素,高质量的数据处理、数据标注服务以及完善的数据收集和评估体系的价值将进一步凸显。
应用端或百花齐放
应用落地方面,武超则判断,总的来说,数据壁垒将带来企业端大模型百花齐放。
“通用大模型可以帮助用户解决一般性问题,而当企业需要处理其特定行业的数据和任务时,往往需要针对其行业数据库来对基本模型进行微调,垂直行业的特性和需求不尽相同,因此大模型的应用也呈现出多样化的趋势。”武超则说。
而在B端应用上,武超则表示,出于对模型的经济性考量,未来将呈现阶梯式、差异性需求。
“大模型在垂直领域的商业化落地对模型的运行成本更为敏感,模型的推理成本与模型的参数量多少密切相关,需要不同参数规模的大模型组成多层次的产品组合,从而在不同场景下实现最佳的经济性,进一步提升大模型的丰富度。”武超则判断。
看好云计算和算力端未来发展
云计算方面,武超则表示,作为当前重要的AI算力提供方案,AI服务器市场获得迅猛发展。根据相关数据,2022年全球AI服务器的出货量占整体服务器比重约1%,随着大模型训练侧和推理侧的需求爆发,AI算力资源需求预计将呈指数增长。
“其中,IDC数据预计,未来5年中国智能算力规模的年复合增长率将达52.3%,全球价值万亿美元的数据中心存量市场将从通用计算逐步过渡向AI计算。”武超则指出。
武超则认为,云计算正从CPU为中心的同构计算架构向以CPU+GPU/NPU为中心的异构计算架构深度演进。
市场规模方面,武超则预计,大模型带来的GPU存量空间将从2023年的277亿美元上升至2025年的1121亿美元,以GPU为代表的AI计算资源中短期将处于供不应求的状态。
“此外,随着专有领域的计算需求提升,AI芯片追求更高的性能和更低的功耗,芯片的多样性和生态丰富性将不断提升。”武超则说。
同时,武超则强调,随着大模型小型化、场景化需求增加,同时出于对AI应用的经济性、可靠性和安全性的考量,部分场景的推理将逐步从云侧扩展向端侧,并带动端侧算力需求的进一步提升。
AI监管仍需加强
在人工智能的快速发展中,武超则强调,加强AI监管与推动AI技术的进步同等重要。
“AI能力带来应用的便利性,同时也可能引发数据隐私、算法偏见、AI伦理等一系列问题。”武超则指出,“从规范角度来看,各国政府也都已经开始采取行动,制定和执行各种AI政策和法规。”
武超则称,从技术角度来看,可以通过可解释AI等技术手段增强AI的可信度。可解释AI使人工智能的决策过程透明化,增加输出内容的可理解性和可信任度,对于构建用户对AI系统的信任、提升系统的有效性、应对潜在的伦理问题都至关重要。
来源:澎湃新闻